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MECHANICAL PROPERTIES OF G10 GLASS-EPOXY COMPOSITE 

K. Ravi-Chandar1 and S. Satapathy2  

The University of Texas at Austin 
College of Engineering1 and Institute for Advanced Technology2  

The mechanical properties of G10 glass-epoxy composites were determined in compression 
and tension tests. From weight and volume measurements, the volume fraction of glass was 
estimated to be about 56 percent. The mechanical property results are summarized in Tables I 
and II. The samples were cut from sheet stock with z-axis along the thickness direction. 
Appendix A shows the sample dimensions. The modulus values were determined by fitting a 
straight line to the initial linear portion of the stress-strain curves shown in Figs. 1–5. For the 
compression test, the strain was calculated from the displacement of the crosshead divided by its 
gage length; these are plotted in Figs. 1–3. The modulus was calculated after determining that 
the compliance of the loading system was 81.57 10−×  m/N. However, in the tension tests, a clip 
gage extensometer with a gage length of 1 inch was used. Therefore, the modulus measurements 
from the tension test are the correct values, while the modulus from the compression tests may 
be biased with the compliance of the loading system. Photographs of failed compression 
specimens are shown in Figs. 6 and 7. A similar characteristic failure pattern with a crack at a 45 
degree angle is observed. The only difference between the X, Y, and Z was the peak stress at 
which it cracked. 

Table I. Compressive Properties 

 Young’s 
Modulus 

Peak 
Stress 

Average 
Modulus 

Average 
Peak Stress 

Standard 
Deviation of 

Modulus 

Standard 
Deviation of 
Peak Stress 

 GPa MPa GPa MPa GPa MPa 
X-1 17.47 368 18.8 365 1.26 4 
X-2 18.89 368     
X-3 19.97 360     
Y-1 19.90 302 18.9 300 0.89 5 
Y-2 18.33 294     
Y-3 18.39 303     
Z-1 7.32 437 7.83 440 0.87 7 
Z-2 7.33 436     
Z-3 8.83 448     



2 

Table II. Tension Properties 

 Young’s 
Modulus 

Peak 
Stress 

Average 
Modulus 

Average 
Peak Stress 

Standard 
Deviation of 

Modulus 

Standard 
Deviation of 
Peak Stress 

 GPa MPa GPa MPa GPa MPa 
X-t-1 18.63 223 18.83 233 0.22 10 
X-t-2 18.80 244     
X-t-3 19.06 232     
Y-t-1 19.02 319 19.26 310 1.15 9 
Y-t-2 18.25 301     
Y-t-3 20.50 310     

       
Results from the high strain-rate tests in a split-Hopkinson compression experiment are 

summarized in Table III. Figs. 11–13 show the results of stress-strain obtained from the 
Hopkinson bar experiments with aluminum bars. Reliable reflected signals were not always 
obtained since the specimen began to crumble. Therefore, estimates of both the strain rates and 
strains are difficult to obtain; it is accurate to indicate that the strain levels were in the order of 
103 s-1. Dynamic modulus estimates from these tests are also not likely to be accurate and hence 
these calculations were not performed. The peak stress at breaking is rather well defined since 
this depends only on the intensity of the strain signal in the output bar of the Hopkinson 
arrangement. For the X and Y orientations, the compressive strength increases by nearly a factor 
of two and may be attributed to the strain rate dependence of the polymer matrix. For the Z 
orientation, the specimen crumbled into a powder suggesting that dilation of the specimen 
occurred during the nonlinear increasing part of the stress strain curve shown in Fig. 13. Proper 
interpretation of the data beyond a strain level of about 3 percent is not easily accomplished and 
the values of peak stress indicated is likely to be a significant overestimate of the actual peak 
stress.  

Table III. Hopkinson-Bar Properties 

  Peak Stress 
  MPa 

X-H-3 -677 
X-H-4 -617 
Y-H-2 -528 
Y-H-3 -528 
Z-H-1 -901 
Z-H-2 -856 
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Figure 1. Stress-strain curve for G10-Orientation X; compression. 
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Figure 2. Stress-Strain curve for G10-Orientation Y; compression. 
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Figure 3. Stress-Strain curve for G10-Orientation Z; compression. 

 

Figure 4. Stress-Strain curve for G10-Orientation X; tension. 
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Figure 5. Stress-Strain curve for G10-Orientation Y; tension. 

 

 

Figure 6. Photograph showing failure mode; Specimen X-3. 
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Figure 7. Photograph showing failure mode; Specimen Z-2. 

The failure patterns in the tension tests are shown in Figs. 8, 9, and 10. While many of them 
splintered (Figs. 9 and 10), others had a cleaner break. However, all specimens broke on the gage 
section between the clip gage extensometer, indicating a valid peak stress measurement. 

 

Figure 8. Photograph showing failure mode; Specimen X-t-1. 

 

Figure 9. Photograph showing failure mode; Specimen X-t-2. 
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Figure 10. Photograph showing failure mode; Specimen Y-t-2. 
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Figure 11. Stress-strain curve for G10-Orientation X; Hopkinson. 
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Figure 12. Stress-strain curve for G10-Orientation Y; Hopkinson. 
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Figure 13. Stress-strain curve for G10-Orientation Z; Hopkinson. 
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APPENDIX A 

 

 

Figure A-1.Sample dimensions for tensile tests. 

 

Figure A-2. Sample dimension for Split-Hopkinson bar experiment. 

 
 




